Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(2): 274-286, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508391

RESUMO

Direct cellular reprogramming has recently gained attention of cancer researchers for the possibility to convert undifferentiated cancer cells into more differentiated, postmitotic cell types. While a few studies have attempted reprogramming of glioblastoma (GBM) cells toward a neuronal fate, this approach has not yet been used to induce differentiation into other lineages and in vivo data on reduction in tumorigenicity are limited. Here, we employ cellular reprogramming to induce astrocytic differentiation as a therapeutic approach in GBM. To this end, we overexpressed key transcriptional regulators of astroglial development in human GBM and GBM stem cell lines. Treated cells undergo a remarkable shift in structure, acquiring an astrocyte-like morphology with star-shaped bodies and radial branched processes. Differentiated cells express typical glial markers and show a marked decrease in their proliferative state. In addition, forced differentiation induces astrocytic functions such as induced calcium transients and ability to respond to inflammatory stimuli. Most importantly, forced differentiation substantially reduces tumorigenicity of GBM cells in an in vivo xenotransplantation model. The current study capitalizes on cellular plasticity with a novel application in cancer. We take advantage of the similarity between neural developmental processes and cancer hierarchy to mitigate, if not completely abolish, the malignant nature of tumor cells and pave the way for new intervention strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Astrócitos , Fatores de Transcrição/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Diferenciação Celular , Células-Tronco Neoplásicas/metabolismo
2.
Stem Cell Reports ; 17(7): 1620-1635, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750047

RESUMO

Astrocytes are emerging key players in neurological disorders. However, their role in disease etiology is poorly understood owing to inaccessibility of primary human astrocytes. Pluripotent stem cell-derived cells fail to mimic age and due to their clonal origin do not mimic genetic heterogeneity of patients. In contrast, direct conversion constitutes an attractive approach to generate human astrocytes that capture age and genetic diversity. We describe efficient direct conversion of human fibroblasts to functional induced astrocytes (iAs). Expression of the minimal combination Sox9 and Nfib generates iAs with molecular, phenotypic, and functional properties resembling primary human astrocytes. iAs could be obtained by conversion of fibroblasts covering the entire human lifespan. Importantly, iAs supported function of induced neurons obtained through direct conversion from the same fibroblast population. Fibroblast-derived iAs will become a useful tool to elucidate the biology of astrocytes and complement current in vitro models for studies of late-onset neurological disorders.


Assuntos
Astrócitos , Células-Tronco Pluripotentes , Astrócitos/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Neurônios , Células-Tronco Pluripotentes/metabolismo
3.
J Clin Med ; 9(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121121

RESUMO

Sanfilippo syndrome type C (mucopolysaccharidosis IIIC) is an early-onset neurodegenerative lysosomal storage disorder, which is currently untreatable. The vast majority of studies focusing on disease mechanisms of Sanfilippo syndrome were performed on non-neural cells or mouse models, which present obvious limitations. Induced pluripotent stem cells (iPSCs) are an efficient way to model human diseases in vitro. Recently developed transcription factor-based differentiation protocols allow fast and efficient conversion of iPSCs into the cell type of interest. By applying these protocols, we have generated new neuronal and astrocytic models of Sanfilippo syndrome using our previously established disease iPSC lines. Moreover, our neuronal model exhibits disease-specific molecular phenotypes, such as increase in lysosomes and heparan sulfate. Lastly, we tested an experimental, siRNA-based treatment previously shown to be successful in patients' fibroblasts and demonstrated its lack of efficacy in neurons. Our findings highlight the need to use relevant human cellular models to test therapeutic interventions and shows the applicability of our neuronal and astrocytic models of Sanfilippo syndrome for future studies on disease mechanisms and drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...